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PLA;m AND THREE -DIMENSIOXAL FL(M AT

HU3H’ SUBSONIC SPEEDS*

(Extension of the Prandtl Rule)

3y B. Gother t, Berlln-Adlershof

Abstract: For two- and three-dimensional flow in a
compresstbl.emedium, u simple relation is Civcn by which,
to a first &pproxination, the quantitative influence of
cmupresslbllity upon the velocities and press-ures can be
understood in Q cle&.lDmanner. h the apqllcatl.on of’this
reluti.on the dfsttnct behaviors @f two-dimensional and
axially s;’minetrfcthree-dir,ensic)nalflow with increasing
Yach number are brou@t cult. For slender elliptic
cyl?.nders md ellipsoids of nevolutior., calculations are
r.adeof the crltlcal Mhch numb~r; that is, the Mach
n-amberat whtc’n local sonic veiccity is achieved on the
bcdy. As a furtker cx~mple, the lil’tingwing of finite
span is considered, and it is shown that the increase of
wing llft with ?rGCl~number at a ~ivcn angle of attack Is
greatly derendent upon tho Rspect rat~.o b2/F .

OUTLINE

1. Approxtiate Equation for Compressible Flow (Prandtl
Rule )

110 Dlstortlon of the Perturbation Potential and the
Streamline Field in Equal Sense and In Equal
Strength (Extension of the Prandtl Rule)

4“ III. Plane

- 1.

and Three-Dimensional Flow without Lift
.

W- of Finite llhicknesswithout Lift In
Two-Dimensional Flow

Axially S- etrlc Bodies without Ltf’t

*lfEbeneund raumliche Str&ung bel hohen Unterschall-
geschwlndigkeitenll(Erweiterung der Prandtlschen Regel)
from report lz?, Lilienthal Gesellschaft. :Jp97 - ~.~~.c
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3, Comparison of Two-Dlrnensloz’mlmd Axially.

lf=~= Itree stream v’slocit

ao +=tinted():Smul
Mach nuzhr .



‘the.filcompre.ss$bl&flow at the-corresponding points
determined from equation (?)~ In this transformation the
perturbation velocities Avy and AVZ become smaller
at the correapondfng points of the mmpresslble flow by ‘

the ratio ~~a, mile the perturbation velocities
Avx remain.unchanged,

If a parallel flow with the velocity V. = Voie
o’

is now superimposed upon the perturbation velocities ~
determined In this manner, the Inclination of the stream-
~ines will be reduced at the correspo@ing points. in the
compressible flow, while the ~essures will, to a first
approximation, remain unchanged (on the assumption of
sli@t deviations from parallel flow, the pressures ares
to a firs% approximation, only a.function of the
perturbation valocity Vx). In the transformation to the
compressible flow the streamline .pattern will, as a result
of the smaller inclinations of streamlines in the com-
pressible medium, no longer be compressed according to a
simple rule; that 1s, It will be deformed in an opposite
sense from the pctenttal field to a degree not immediately
apparent.

It now frequently becomes exceedingly dlfflcult to
determino the new contour in the distorted potential fi81d.
Conatder, f’orexample, the very simple case of flow about
a plate of fnf~n:.tespan at a sm&ll angle of attack. If
the potential of the flow about the plate {incompressible) ..(
is distorted In th
by the factor l/vw’%: ;:2:: 2-t2p&Ys *(:‘;
together with the posltl&s of the bound vortices pro-- ,.$3:
ducln~ tho lift, move during the~dlatortlon as if-the :-b /=

angle of’attack of the plate had been Increased. On the
other hand, however, the slopes of the Streamlines -becorna “
flatter In the ratio <~~. It Is evident that after-. .
th% distortion a flow take~-~plaeebetween the”bound
vortices. In this nlmple case, however, the proper
relationship between the poslttons of the bound vcmdd-ces
and the stre%mllne s~-opes can be achiewed ea~ly. by.a
corr~spondi~ intensific..ationof the potential In the
compressible flow. The rel.attti”shipsbecome-considerably .’
more difficult, even, for ex~mple, In tha .oase of inclined- ..
flow about a plate of ffilit~ span, for which three-
dimenslonal flow results, so that.-afterthe-potenti.al.”. “
dlstortim the flow becomes quite con.fual.ng. .

.... . .
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II ● DIST CJRTIONOF ~Z~ PERTURMTION POTZNTIAL MD TEE

3TREJMCJVE FIZLD IITEQUAL

mum 9TRHGm (mT2ES10N OF

TII~~iff’~~u~tles Indicated In
can be in princip].e lessened if it
the streamline pattern in the sane

SdNSE AllDIN

THE PRAHDTL RULE)

the pr3cedlng section
is possible to distort
sense and to the same

extent ES the potential field of the perturbation flow.
This aim cm in f’actbe achieved by means of a stratagem.

Equation (1) is completely independent of the veloclty
v~ c)f the parallel .f’lowupon which the perturbation
potential Q Is superimposed; it must cmly be observed
that the perturbation velocities re~ain small in comparison
with the veloctty of the p=allel flow, It therefore makes
no difference ~~;hcth~rth~ velocity vo~c in the incoin-

presaible medium is of the s$me or a diffsrcnt magnitude
comp~~ed with the v~locity Voc In the compressible

medium, If the fcllowfng relationship is now chosen
between the velocities of the parallel stream In the corn.
pressibla and in the incompressible mediums:

that Is, at corresponding points in tho compressible
medium th~ streamline ?r]clination is Increased In the

rntio l/-,fi-@’ . The same reletion can also be found
fcr the z-direction. This ~.~ails,however, that the stre~
lice p~ttern of the 20mpi-0SSi51@flow results simply from
distortion of the equivalent incompressible flow in the
directions of the y And z axes by the factor 1/- 1 - Ms.
The streamline pettern and the perturbation potential
field are thus actually distorted in the same way.
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The following relationships can be found for the
perturbation velocity Avx and hence also for the local
pressure Ap In the flow:

APC AVXC AVXIC
-2X —=2x—

s
a

x Voc Voc (1 - Ma) x Veto

that 1s, in the compressible flow the pressure ratio
Apc

and the ve~ocity ratio Avx~\voc are larger
p/2 x Voca

by the factor 1/(1 - Ma) than at correspondhg points of
the equivalent Incompressible flow.

From the basic facts derived &bove, the following
simple proposition can be demonstrated:

The streamline pattern of a compressible flow to be
calculated can be compared with the streamline pattern of
an inc~,lpresslble flow which results from contraction
along the y and z axes of the profile contour by the

factor @- ‘—M% (x-axis in the direction of the free
stream). In tlieresulting compressible flow the

Ap
pressures as well as the perturbation

p/2 x vo~

velocities MT+. are .meater In the ratio 1/(1 - Ma)
and the streamline slopes greater In the ratio

--——
l\{l - Ma

than at the corresponding points of the equivalent lncom-
pressihle flow.

With this principle, approximate solutions can be
obtained in all cases.of compressible flow, as long as the
corresponding.solutl.ons.i%~ incompressible flow are known.
Thus the problem, mentionod In the beginning, of an
lnf’tii.telybroad plate glaced at a small angle of attack,
can be solved in a simple @nner, as well as the flow
about win~s of finite span, swept-back wings, axially
symmetric bodies, and the like. In this manner, a180,
approxtiate solutions are found quite easily for tbree-
dimensional flows which are not axially sym.umtric, of
which an exanple will be given in the following section IV.

m 11 . -- .-, -, . - —
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III ● PLLNE AND

1. Wtng of

Velocity
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THREE-DIMENS1ONAL FL(XVWITHOUT LIFT

Flnlte Thickness without Lift In

Two-Dimensional Flow

Along tho Surface of the Body

If, for the sake of slmpllcity, the wing is represented
by an elliptlc cylinder of Mrga span, then It Is known
from.incompressible flow that the greatest veloclty lncre-
appears at the posltlon of maximuu thickness, and has the
ma@tude Avmu /vo = ?./t.

According to ths rule presented previously the
perturbation valoclties produced b a bod fn incompressib~

,.f-loware ,~~atkr by the fact~ 7 T1 (1 -Ma than those
for a body i.nincompressible flo~.~thinner by ~~a,
that 1s:

()

Avn~ 1 [A%ax % . ~ /d
=—

1
x——

%c - 312
() ‘o i~ 1- (}Xaxric

I

Viith (d/t)~c = •,~a (d/t )C

&eatcst excess velocfty on the
flow :

(

)
Avmm 1—= — -—. —

Vo)c vi -Ka

there then results for the

wing in the compressible

(M)

~d

,tc

The greatest excess velocities, and therefore also
the ~eat~+st ne~ativo prossuras .zctln.gon the wing, there-
fore correspond in plme flow to the familiar Pr~dtl Rule

with l.l~~i% Since the vgloclty distribution over the
elrfoil In compressible flow Ccrresxmd? to thELtover a
thhncr s=ctlon In ~~lcomy’essible fiow, the curve of.’
velocit~ distribution becorms some~iiatmore full with
lncrcasin~ Mach numhero

I
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Velocity Disturbance
9 .-. . .

7

at a Great Dtstance from the Airfoil

Accordlnc to a calculation- carr-iedout In FB I-16~,
in incoinpress~ble flow the velocity perturbation Avx~v~
at a great distance from a sl.nd.er~ing of l-~&e-sp- 1s:--..—-...~-”-------------- -.-., ‘=-.---”---— ....__-+-.——

AVX d

~\
Ya - Xa

-- x ta
Vo {ct x (ya + xa)~
.

According
following form

j Avx”
i )

1—-4 ——

to section II this equation takes”the
for compressible flow:

tca

The fallowin~ relat~onghip therefore results for the
incraasc of the perturbation velocity Avx/vo with

increese of lfachnumber at a ‘;lvenpoint a great distance
from a ‘>ody:

(%&J 1 (1-lia)xyf-~a (Y.a+ #9a

(Av#o) io — ““ _“ ~tix ,(1. Ma) x Y03 + ~a7 a x Yoa - .Oa

If it is now hssuned thtit x ‘is small compared with
Ye# that is, if a point a larGe %stance sideways from
the body Is considered, then accord~n~ to the above equatim 1’

the addlt~onal velocities und therefore also the pressures

incrsase by 1/(1 - ya)sla that is, by the third power of
the Prandtl factor. If, however, yc is small compared
with X that is, for instance, points far ahead or
behind g~e airfoil are ccnsiderad, the additional velocities X
and ressuras increase by

P
1/ ‘-=—fi~,that is, only with

Fthe irst power of the Prandt factor.

2. Axially Symnetric Bodies without Lift -

Velocity Distribution over the Surface of the Body

For ellipsoids of revolution the @eatest velocity
increments, ap~erwinr at thti~osition of’maximum thicllmesg, .-— . .———

aB. Gothert: Linige Bomer.kungen zur Prandtlschen
Regel in >ezug a~lfebene und raumliche Strbhung (ohne
Auftreib). FE 1165.

~. — ..— —



8 NACA ~ NO. 1105

are shown in fi&mre 1 for Incompressible flow according
to a calculation b~ V;einig3.

According to this, the velocity increments no longer
rise linearly, as In two-dimensional i.low,but more nearly
fOllOw a quadratic law. For small thickness ratios the
curve for the veloclty increment cal be represented in m
approximate manner in-the following way:,,

.’
..-”

.- Avm~
“,.. . -

.

.’

____ . * x @)’ X trl(..)a
Vo

,1

If the .rencralrule is applied once
section IT, ;ne obtains
in compressible flow:

f’orth8 fyeatest
more according to
velocity increment

and for the ratio of the Createst excess velocities in
compressible and Inccmpresslblc flow for axially s-tric
bodies:

—...-

(Avmm\vo )c
..— = ~ + ‘;&-,y:l
(AvmuK

For small thickness ratios, it is evident that in
spite of’increasln~ Yach number the greatest veloclty
Increment on elllnsoids OJ’revolution does not rise. only
for p3ater thickness ratios dues an Increase of the
velocity increment appear, which is rou@ly proportional
to the square or the thickness ratio. It must be noted,
ho-.wver, that in the approximate calculation terms of the
order or ~~agnitude of Avxa as well as Avya have been

ne~lcctecl, wy,j.chare llhcwiae of the order of nagnitude
of (d~t)~o It sl!ould% conscluently r~alizcd that tiedbove
approxj..:zteequct,ionrJJ.3rbe ~crro:orct~cl by fixperlrnental

- results, Since the ~elocity ~lstri~ution over a body of
r~vc)l~lt~oncOl’resPo~ldsin c~~~re8s~-.J~.e‘low to that -over a
more slsnder.boqy in-ln~onpre~siblo 11ow, the velocity
distribution wL1l bucome somewhat fuller with increasing

‘“ltachnum%r.

aF@ ‘elni&: Ver.glelch der ebenen und der achsen-
symmetrlschen Stromung um ‘I;idw?standskorpcr. Schiffbau
1930s. 15.
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i
f Veloclty Distwbance at a Great “Distancefrom

T ‘“- ‘“” ‘- -
130dlesof Revolution

1“
r

According to a calculation caz-riedout in FB 1165,
the velocity perturbation Avx/vo at a large distance

from a slender body of revolution is, in incompressible
I“1OW: ,“

Avx ~w

07 . ~a

—“T
—Xt=

Vo x (Ja+xa)-

For the compressible flow it Is then found once more
frmfithe corraspondf.ng conversion of the equivalent lnoom-
pressible flow that tbe velocity disturbances at points
a great distance from bodies increase in the following
manner:

For points a larSe distance sideweys flromthe body,
that iS, yc large cunpared with. xc, the v910clty
perturbaklons and pressuras increase by 1/(1 - Ma) 3/2
that is, with the third power of ths IWandtl factor, just
as in pltineflow. T%r points fRr tiletidof, or fm behind,
the body the velocity disturbmcea and pressures remain
constant in spite of increasing Mach number.

3. CompWlson of Two-Dimensional md Axially-Symmetric
F1OW without Lift

In figure 2, as.an example, IS shown the increase of’
velocity due to compressibility In the plane of symmetry
x= O for two-dimensional and three-dimensional flow.
It is seen from this example that In the immediate vicini~
of the body the velocfty increment in three-dimensional
flow is inoreaaed only sli@tly by comprecslbility, but

b that with incre~~e of distance from the body the velocity
ratios for plane and thrco-dimensional flow very quickly

approach the common asymptote 1/(1 - l~a)3/a@
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I

A qualitative comparison with the velocity Increments
on bodies in inscnapressfbleflow (cf. fig. 1) till serve
to give an Insight Into the distinctive behaviors of plane
and three-dtmensfonal I’1ow4. If cne imagines, for example,
that the ef’f’ectof compressibility in the vicinity of the
body la somewhat equivalent to ~ incr6asa In thickness,
since as a result of the velocity increment the air expwxls,
then the character of the rise in velocity increment with
transition to hl@er I!achnunibersmust correspond somewhat
tc that from increase of thickn9ss ratic. It is evident,
in fact, florelliptic cylinders (two dimensions), that the

“;’. v-elocityincrement xises in proportion to the thjcknoss
ra~~; tha-ttherefore sli-g%tchan~es--in”thickness ratio,
=, for example, also by compressibility, produce quite
noticeable v~iatlons in velocity Increment; this relation
is Independent of thickness ratio and appears, for example,
even with v.amlahlngly small thickness ratios. For
elllpso~ds of revolution (tb!ee dimensions), the veloclty

-“~Q In.crmzentIncreases a:l~roxmately with-the .secon~ pQwqr
0$’the thickness rat~~, so that 5m.allvariations of
thfc~ness, es, for ‘~xample, also from compressibility,
produce no discernlblo chaa~ in veloclty increment for
very slender bodies. On~fcr very great tlL$,ckn6ssr~-~ios
~q the-effects of an ~ncrcase-..pfthictiess ratio “equal
for elliptic cylinders and ellipsoids of revolutions, just

/
a-sin compre~-slhle flow at & large distance from the body
the sq.me.veloc$ty perturbations’~e encountered with plane
and tb~ee-dimensional flow.—-- . --

4. Determination of Critical F&ee-Stream Velocities for
Two-Dimensional and hially Symmetric Flow

It Is lino~ from wind-tunnel experiments that flow
over slender bodies ~oes smoothly so long as the velocity
of sovnd is not reached or exceeded at any point in the
flow field. If the free-strem velocity la raised so high
that on the body at thG point of maximum v~loctty increase
sonic velncity Is just r:>ached, the flew beGins to
dete~lorate more or less r~pi~ly. This free-stream
velocity shall ncco~Id2n21y bd t~rmed the critical free-
strcam valoclty, md the correspcndtn~ Hach number the
critical l~achnumber 1<+0 If the grehtest velocity incremnt
for Incompressible flow Avic/vo is knowil for a body,

41 tha~ ~ofs Bock, DVL, ~or the basic idea af this
comparison.

——- —---- II ■ ll II H II I
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Cp the baslo principles of the.
i oualy permit calculation of’

~ slender bodies,
i.I Two-dimensional flow:

~andtl rule
the crltlcal

u

presented previ-
Mach number fa

.. -\

,.

Avfc
—= “1. 1V“=+++-+”+;

‘o
M%

Three-dimensional flow (with d/t = f ~ic\Vo) accord.
Ing to figure 1):

For ~lliptlc cylinders :md ellipsoids of revolution
the critical Mach nutiers calculated from the above equations
are shown In fiome 3.

From the fiq~e It is seen that the ttiee-di~len5iQnal
flow tif’f~rdscon~iderably more favorable results than the = ‘~~
plane i’].ow,since on the bile hand for equal thickness ...Y,,*
ratios the ~laxi~~ valoclty increment is considerably lower
at M = O, and on the other hand upon goin~ to higher
Mach numbers the velocity Increments rise only insignifi-
cantly. For exa~ple, an elliptic cylinder airfoil at
15-percent thickness ratio possesses according to this a
critical I?achnumber cf M++ = 0.78, while an elliptical
fuselage of’the same thickness ratio reaches the critical
region only at a l:achnumber of M+ = 0.93.

This result indicates that for aircraft the achieve---~
ment of the greatest possible slenderness should be i
concentrated In particular upon the wing, since the fuse-
lage and engine nacelles of’favorable shape will reach

Llocal sonic velocity only at oonslderably higher velocities ,,
*

than correspond to the critical 8peeClof the wing.
J

This result Is naturally valid only for smooth bodies
without protuberances,
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IV. WTITG CM?FINITE SPAN

If one cons~ders next m ide~.lizedwine, represented
by a flat platp.of aspect ratio L = ha/%’ which moves
at a small angle”of aktack a and Mach number Id, then
this plate has in incompressible flow at the same angle
Or attack the following lift coefficient according to.the “
lifklllg-llnethaory6:

Tn compressible flow the ~ressures and hence also the
lift ooeff~cient are ~eater in the ratio 1/(1 - Iia) than
for an equivalent plute In incompressible f“low,whose

span and angle o~”attack are smaller in the ratio V~-—3!=,
thnt :.S:

For t%.efractional Increase of lift coefficient with
rise fin Yach number one finds therefore:

5 Yurhs, Fiopf, Seewald: Aerodynamic, 13d.2 (1955)
So 137, Verlag Sprtn~er, Berlin 1935.
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-“.,,fi. .... . .Between thqqe two llmltlng cases lles a complete int&--!
mediate region, whtch Is ’represented In figure 4. Thus ~
for a wing of aspect ratio A = 1 the Increase due to ..~,
compressibility in the llft from Mach numbers in the range - ‘
M= O to O.~} up to a Mach nutier of M = 0.9 amounts \
to about 35 percent, still only approxirn~tely 20 percent .
of the value found for infinite aspect ratio.

.

For small aspect fiati.os,to which the linear airfoil
theory Is no longer applicable, Bollaye has presented
investigations for Incompressible flow in which, for
exam~le, for a plate of vanlshlngly small asp6ct ratfo
there results: ~L = 2m sinaa. From this equation It Is
llkewise found that the lift coeft’iclent Is not Increased
by coqmessibilltT, since the anGle of attack a of the
equivalent plate nust be chos6n smaller by the ratio.—
~ - Va, whflle the pressure is subsequently increased
by 1/(1 - Ma).

The influence of aspect ratio u~on increase of lift “,
coefficient which was found by this method will be of
importance in the stability of afrcraft. If, for example,
the enJJeMagO has a smaller RSpOct ratio than the wing,
the aC@a of the wing rlses more rapidly than

th6 ~C@a of the tull, so that the afrp?.anebecomes
..

unstable with increasf.n~:Mfichnumber. If the moment of
the fusela~e is to be considered In the stability of the
airplane, It must be realized that the fuselage moment
remains practically constant, and a further postponement
Is accordingly to be anticipated.

...

v. smlmRY

1. l@om the continuity equation for three-dimensional
flow In a compressible medium the following rule, valid
for slender bodies, is found by means of a transformation
similar to that employod In the ~erivation of the Prandtl
rule:

The streamline pattern of a compressible flow to be
calculated can be colaparedwith the streamline pattern of.. — ——.

‘Bollay: A~~onlinear Wi& Theory-~d~ts Application
to Rectangular Wi~s of Small Aspect Ratio. Z.A.M.M.,
13da19 (1939) Pp. i?~to 350
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flew which ”results from contraction
along th~ ~._~nd z ties o? the profile contour by the
::::’, ●d . M-a (x.axis in the direction of the free

In the resulting compressible flow the pressures

Ap
as well as the perturbation velocities Avx\vo

p/2 x V.a

aro ~~e~ter in tineratio
$4

1/(1 - a and the streamline
slopes ~eater in the ratio l\~~- M th- those at the
corresponding points of the equivalent incompressible
f10’J●

2. It is shown for slender bodies in two-
dimensional flow the velocity ratios Avx/vo and the

pressure ratios
llp along the surface of the body

p/2 x vo~

Increase.with incre~lslng Ilrea-strema veloci.tyby the

ratio l/J/ii, while for axially 8ymmetric flow these
rattos remain constar.t :n spite of increasing Mach number.

3. At a peat distcnce to one side of the body
(x = O) the perturbation velocities Avx and the

pressures increase to the same degree in both two- and
thr6e-dimensional f’lowin the ratio 1/(1 - Ma)3@ . At
8 ~~eat distance at,eedof and behind the body the velocity

Avx
—.— .

and pressure rise in the ratio l/~tih- Ma in two-
dimensional i’1.ow,hut remain constant in three-dimensional
flow ●

1+, For elllptic cylinders -d ellipsoids of revolutlm
the Itac.hnumbers are c~lculated for which sonic velocity
Is just re6ched locally on the “cody (fig. 3). Accordingly,
for exa-,lrle,an elqiptic cyllnder of 0.15 thickness ratio
possessos a critlcel ;!achnumber of 0,7~, while an
ellipsoid of revolution of equal thiclul.essr~tio shows a
critical.Fach number of’0.93.

5* Ib is dewonstimated the lift ~o~fflcient uf airtolls
rises according to the .Prandtlrule with l/]/i- Ma only
with Inflnitoiy lnr~e as~ect ratio; for finite aspect ratio
the Increese Is somewhat smaller, until in the limiting
caze of v8nishinqly small as-pectratio it completely dls.
appears, that 1s, for ?.40 an increase of Mach number

I
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at constant angle .of attack produces no Increase in lift
coeffic~ent. This influence of aspect ratio is presented
in a graph (fig. 4).

Translation by Milton Van Dyke
National Advisory Committee
for Aeronautics



Figs. 1,2

&
v#

4 m~xi=dsuper-stream
AC<: vel OCity on body

withM= ~
.~lliptic cylinder

/ ‘
/

Ellipsoid of /
revolution /

/

resp. D/L

Fig. 1 Maximum super-stream velocity for elliptical cylinders
and ellipsoids of revolution.

5 I I I [ I I I 1

(AdIA Common asymptote

m,
I H

——— — . — — — .

at {/( f-P?2)312

+ i

plane flow

3

~Distance from profile-center line y~t

Fig. 2 Perturbation velocities for X=(I through a plane and
through rotationally symmetric disposition of source-
depressions in incompressible and compressible flow.
( Mach number M=0,8 ).

Notation of coordinates:
Perturbation velocity in incompressible flow:

(A Vx/ Vo)ic

Perturbation velocity in compressible flow:
( M=0,8 1 :

(A Vx/ Vo)c

—.
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w I I I \ 9

d/t resp. D/L A, ,
I 1

Curve a: N, ~

‘::::”’ (w%yon Ellipsoid of revolution

Curve b: \
\&

with correction term bI \ \.
\ b

‘\P
~lliptic cylinder b

q%
\

\

i \ \

\

\

o.
47 48 49 fa

m C’i’i’”’““h-n’J’’”Nx

Fig. 3 Maximum super-stream velocity and critical Mach number
M* for elliptical cylinders and ellipsoids of revolution
in symmetric flow.
M*= Mach number of the flow velocity at which the
body attains sonic velocity.

Fig. 4 The influence of asrect ratio upon the increase of
lift coefficient at the same angle of attack by inc
sing the Mach number “M

1
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